My primary lunar lander prototype (not the one shown below) does not have true rigid body dynamics yet. The rocket's heading is driven directly by mouse movement. This makes it really easy to steer the nozzle but I have been unsure about how to alter it once the rocket can actually collide with the terrain in a way that applies torque. If you are able to directly rotate the rocket that could introduce unwanted interpenetration or arbitrary launch velocities.
I have a separate prototype at the moment where I am testing out the rigid body dynamics. The rocket, at the moment, has a single steerable nozzle. It will probably be necessary to add steering jets to make it easier to fly. Right now when you apply a torque to the rocket you are also applying a hefty linear acceleration as well.
The first control method is very simple to implement. The mouse rotates the rocket nozzle; the mouse button fires it. This is demonstrated in the first clip above.
In the second control method (shown in the latter half of the movie) the mouse sets a desired thrust direction. While the rocket is firing, an autopilot steers the rocket nozzle to align thrust in the specified direction. At the moment it's snapping the nozzle to one of three positions: extreme left, extreme right, and center. This is not terribly realistic; I'm still figuring out how to make it more natural.
No comments:
Post a Comment